Extensions 1→N→G→Q→1 with N=C23 and Q=C2xA4

Direct product G=NxQ with N=C23 and Q=C2xA4
dρLabelID
A4xC2448A4xC2^4192,1539

Semidirect products G=N:Q with N=C23 and Q=C2xA4
extensionφ:Q→Aut NdρLabelID
C23:1(C2xA4) = C2xC24:C6φ: C2xA4/C2A4 ⊆ Aut C23126+C2^3:1(C2xA4)192,1000
C23:2(C2xA4) = C2xC23:A4φ: C2xA4/C2A4 ⊆ Aut C2316C2^3:2(C2xA4)192,1508
C23:3(C2xA4) = C22xC22:A4φ: C2xA4/C23C3 ⊆ Aut C2312C2^3:3(C2xA4)192,1540
C23:4(C2xA4) = C2xD4xA4φ: C2xA4/A4C2 ⊆ Aut C2324C2^3:4(C2xA4)192,1497

Non-split extensions G=N.Q with N=C23 and Q=C2xA4
extensionφ:Q→Aut NdρLabelID
C23.1(C2xA4) = C2wrA4φ: C2xA4/C2A4 ⊆ Aut C2384+C2^3.1(C2xA4)192,201
C23.2(C2xA4) = 2+ 1+4.C6φ: C2xA4/C2A4 ⊆ Aut C23164C2^3.2(C2xA4)192,202
C23.3(C2xA4) = C2xC42:C6φ: C2xA4/C2A4 ⊆ Aut C23246C2^3.3(C2xA4)192,1001
C23.4(C2xA4) = C2xC23.A4φ: C2xA4/C2A4 ⊆ Aut C23126+C2^3.4(C2xA4)192,1002
C23.5(C2xA4) = C24.6A4φ: C2xA4/C2A4 ⊆ Aut C231612+C2^3.5(C2xA4)192,1008
C23.6(C2xA4) = C24:A4φ: C2xA4/C2A4 ⊆ Aut C231612+C2^3.6(C2xA4)192,1009
C23.7(C2xA4) = 2+ 1+4.3C6φ: C2xA4/C2A4 ⊆ Aut C23164C2^3.7(C2xA4)192,1509
C23.8(C2xA4) = C4xC42:C3φ: C2xA4/C23C3 ⊆ Aut C23123C2^3.8(C2xA4)192,188
C23.9(C2xA4) = C2xC23.3A4φ: C2xA4/C23C3 ⊆ Aut C2324C2^3.9(C2xA4)192,189
C23.10(C2xA4) = C42:4C4:C3φ: C2xA4/C23C3 ⊆ Aut C23246C2^3.10(C2xA4)192,190
C23.11(C2xA4) = C24:C12φ: C2xA4/C23C3 ⊆ Aut C23126+C2^3.11(C2xA4)192,191
C23.12(C2xA4) = C42:C12φ: C2xA4/C23C3 ⊆ Aut C23246C2^3.12(C2xA4)192,192
C23.13(C2xA4) = C42:2C12φ: C2xA4/C23C3 ⊆ Aut C23246-C2^3.13(C2xA4)192,193
C23.14(C2xA4) = C23:2D4:C3φ: C2xA4/C23C3 ⊆ Aut C23126+C2^3.14(C2xA4)192,194
C23.15(C2xA4) = C24.A4φ: C2xA4/C23C3 ⊆ Aut C23246C2^3.15(C2xA4)192,195
C23.16(C2xA4) = (C22xC4).A4φ: C2xA4/C23C3 ⊆ Aut C23246-C2^3.16(C2xA4)192,196
C23.17(C2xA4) = C24.2A4φ: C2xA4/C23C3 ⊆ Aut C23126+C2^3.17(C2xA4)192,197
C23.18(C2xA4) = C24.3A4φ: C2xA4/C23C3 ⊆ Aut C23246C2^3.18(C2xA4)192,198
C23.19(C2xA4) = C23.19(C2xA4)φ: C2xA4/C23C3 ⊆ Aut C23246C2^3.19(C2xA4)192,199
C23.20(C2xA4) = C22xC42:C3φ: C2xA4/C23C3 ⊆ Aut C2324C2^3.20(C2xA4)192,992
C23.21(C2xA4) = C4xC22:A4φ: C2xA4/C23C3 ⊆ Aut C2324C2^3.21(C2xA4)192,1505
C23.22(C2xA4) = C2xQ8:A4φ: C2xA4/C23C3 ⊆ Aut C2348C2^3.22(C2xA4)192,1506
C23.23(C2xA4) = C4oD4:A4φ: C2xA4/C23C3 ⊆ Aut C23246C2^3.23(C2xA4)192,1507
C23.24(C2xA4) = A4xC22:C4φ: C2xA4/A4C2 ⊆ Aut C2324C2^3.24(C2xA4)192,994
C23.25(C2xA4) = (C2xQ8):C12φ: C2xA4/A4C2 ⊆ Aut C2332C2^3.25(C2xA4)192,998
C23.26(C2xA4) = SL2(F3):5D4φ: C2xA4/A4C2 ⊆ Aut C2332C2^3.26(C2xA4)192,1003
C23.27(C2xA4) = D4xSL2(F3)φ: C2xA4/A4C2 ⊆ Aut C2332C2^3.27(C2xA4)192,1004
C23.28(C2xA4) = C2xD4.A4φ: C2xA4/A4C2 ⊆ Aut C2332C2^3.28(C2xA4)192,1503
C23.29(C2xA4) = C2xC4xSL2(F3)central extension (φ=1)64C2^3.29(C2xA4)192,996
C23.30(C2xA4) = A4xC22xC4central extension (φ=1)48C2^3.30(C2xA4)192,1496
C23.31(C2xA4) = C23xSL2(F3)central extension (φ=1)64C2^3.31(C2xA4)192,1498
C23.32(C2xA4) = C22xC4.A4central extension (φ=1)64C2^3.32(C2xA4)192,1500

׿
x
:
Z
F
o
wr
Q
<