extension | φ:Q→Aut N | d | ρ | Label | ID |
C23.1(C2xA4) = C2wrA4 | φ: C2xA4/C2 → A4 ⊆ Aut C23 | 8 | 4+ | C2^3.1(C2xA4) | 192,201 |
C23.2(C2xA4) = 2+ 1+4.C6 | φ: C2xA4/C2 → A4 ⊆ Aut C23 | 16 | 4 | C2^3.2(C2xA4) | 192,202 |
C23.3(C2xA4) = C2xC42:C6 | φ: C2xA4/C2 → A4 ⊆ Aut C23 | 24 | 6 | C2^3.3(C2xA4) | 192,1001 |
C23.4(C2xA4) = C2xC23.A4 | φ: C2xA4/C2 → A4 ⊆ Aut C23 | 12 | 6+ | C2^3.4(C2xA4) | 192,1002 |
C23.5(C2xA4) = C24.6A4 | φ: C2xA4/C2 → A4 ⊆ Aut C23 | 16 | 12+ | C2^3.5(C2xA4) | 192,1008 |
C23.6(C2xA4) = C24:A4 | φ: C2xA4/C2 → A4 ⊆ Aut C23 | 16 | 12+ | C2^3.6(C2xA4) | 192,1009 |
C23.7(C2xA4) = 2+ 1+4.3C6 | φ: C2xA4/C2 → A4 ⊆ Aut C23 | 16 | 4 | C2^3.7(C2xA4) | 192,1509 |
C23.8(C2xA4) = C4xC42:C3 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 12 | 3 | C2^3.8(C2xA4) | 192,188 |
C23.9(C2xA4) = C2xC23.3A4 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 24 | | C2^3.9(C2xA4) | 192,189 |
C23.10(C2xA4) = C42:4C4:C3 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 24 | 6 | C2^3.10(C2xA4) | 192,190 |
C23.11(C2xA4) = C24:C12 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 12 | 6+ | C2^3.11(C2xA4) | 192,191 |
C23.12(C2xA4) = C42:C12 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 24 | 6 | C2^3.12(C2xA4) | 192,192 |
C23.13(C2xA4) = C42:2C12 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 24 | 6- | C2^3.13(C2xA4) | 192,193 |
C23.14(C2xA4) = C23:2D4:C3 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 12 | 6+ | C2^3.14(C2xA4) | 192,194 |
C23.15(C2xA4) = C24.A4 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 24 | 6 | C2^3.15(C2xA4) | 192,195 |
C23.16(C2xA4) = (C22xC4).A4 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 24 | 6- | C2^3.16(C2xA4) | 192,196 |
C23.17(C2xA4) = C24.2A4 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 12 | 6+ | C2^3.17(C2xA4) | 192,197 |
C23.18(C2xA4) = C24.3A4 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 24 | 6 | C2^3.18(C2xA4) | 192,198 |
C23.19(C2xA4) = C23.19(C2xA4) | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 24 | 6 | C2^3.19(C2xA4) | 192,199 |
C23.20(C2xA4) = C22xC42:C3 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 24 | | C2^3.20(C2xA4) | 192,992 |
C23.21(C2xA4) = C4xC22:A4 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 24 | | C2^3.21(C2xA4) | 192,1505 |
C23.22(C2xA4) = C2xQ8:A4 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 48 | | C2^3.22(C2xA4) | 192,1506 |
C23.23(C2xA4) = C4oD4:A4 | φ: C2xA4/C23 → C3 ⊆ Aut C23 | 24 | 6 | C2^3.23(C2xA4) | 192,1507 |
C23.24(C2xA4) = A4xC22:C4 | φ: C2xA4/A4 → C2 ⊆ Aut C23 | 24 | | C2^3.24(C2xA4) | 192,994 |
C23.25(C2xA4) = (C2xQ8):C12 | φ: C2xA4/A4 → C2 ⊆ Aut C23 | 32 | | C2^3.25(C2xA4) | 192,998 |
C23.26(C2xA4) = SL2(F3):5D4 | φ: C2xA4/A4 → C2 ⊆ Aut C23 | 32 | | C2^3.26(C2xA4) | 192,1003 |
C23.27(C2xA4) = D4xSL2(F3) | φ: C2xA4/A4 → C2 ⊆ Aut C23 | 32 | | C2^3.27(C2xA4) | 192,1004 |
C23.28(C2xA4) = C2xD4.A4 | φ: C2xA4/A4 → C2 ⊆ Aut C23 | 32 | | C2^3.28(C2xA4) | 192,1503 |
C23.29(C2xA4) = C2xC4xSL2(F3) | central extension (φ=1) | 64 | | C2^3.29(C2xA4) | 192,996 |
C23.30(C2xA4) = A4xC22xC4 | central extension (φ=1) | 48 | | C2^3.30(C2xA4) | 192,1496 |
C23.31(C2xA4) = C23xSL2(F3) | central extension (φ=1) | 64 | | C2^3.31(C2xA4) | 192,1498 |
C23.32(C2xA4) = C22xC4.A4 | central extension (φ=1) | 64 | | C2^3.32(C2xA4) | 192,1500 |